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A series of batch, fed-batch, and continuous cultures was carried out to analyze the effects of methanol on the
fermentation characteristics of recombinant Hansenula polymorpha for the production of hirudin, an anticoagulant.
Hirudin expression efficiencies were greatly influenced by the methanol concentrations in continuous and fed-batch
culture modes. At a steady state of continuous culture, an optimum methanol concentration of 1.7 g l�1 was
determined at a dilution rate of 0.18 h�1 with 1.8 mg l�1 h�1 hirudin productivity. Journal of Industrial Microbiology &
Biotechnology (2001) 27, 58–61.
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Introduction

Saccharomyces cerevisiae, used as a host organism for the

production of therapeutic proteins and industrial enzymes, has

certain limitations such as low product yield and hyperglycosyla-

tion of product proteins [1–4,15,17,19,22,24,25] . Due to these

limitations, methylotrophic yeasts including Hansenula polymor-

pha and Pichia pastoris have been suggested as alternative hosts for

heterologous protein production [1,9,10,14] . H. polymorpha, a

facultative methylotroph, can utilize methanol as a sole source of

carbon and energy [5,6,11] . Upon the addition of methanol into a

culture grown in a medium containing a low concentration of

glycerol, key enzymes involved in methanol metabolism are

expressed. The strong inducible promoter elements, such as

methanol oxidase (MOX) and formate dehydrogenase, have been

used in the cloned gene expression of invertase [23] , bean proteins

of cocoa [29] , phytase [21] , aprotinin [30] , and spinach

glycolate oxidase [8] . Expression studies revealed differences in

the regulatory mechanisms of methanol pathway genes between the

methylotrophic yeasts [1,8] . In P. pastoris, methanol - inducible

proteins were observed only after induction with methanol. For H.

polymorpha, on the other hand, high- level expression of these

proteins could also be obtained in glycerol -grown cells according

to a repression /derepression mechanism. Many research efforts

have been focused mainly on cloning of the genes related to

methanol metabolism and peroxisome biogenesis in H. polymor-

pha [5,12,16] .

Hirudin, a family of 64–66 amino acid proteins excreted by the

blood-sucking leech, Hirudo medicinalis, inhibits thrombin, a

protein involved in the cascade of events associated with blood

coagulation in humans [7] . Hirudin specifically binds to the active

site of thrombin, preventing its action on fibrinogen, and thereby

interfering with the subsequent blood coagulation. Due to these

properties, hirudin has been recognized early as a useful

therapeutic agent for cardiovascular diseases. Therefore, an

abundant supply of the highly purified and active hirudin was

necessary for clinical trials. With limited availability of natural

hirudin from leech, the development of recombinant cell

fermentation processes for a large-scale production was inevitable

[3,19,26–28] .

This study was done to analyze the MOX promoter-mediated

gene expression pattern in an effort to determine an optimum

methanol concentration for hirudin expression in the recombinant

H. polymorpha. Batch, fed-batch, and continuous culture

methods were employed to examine the influences of methanol

concentration on the properties of cell growth and hirudin

expression in recombinant H. polymorpha under various culture

conditions.

Materials and methods

Organism and cultivation conditions
Recombinant H. polymorpha DLUV10 ( leu2, ura3 ) harboring the

chromosome- integrating plasmid pUAEM36 was used. H. poly-

morpha DLUV10 was derived from the DL-1 strain by UV

mutagenesis to confer the ura3 mutation. Plasmid pUAEM36

harbors the URA3 selection marker, autonomously replicating

sequence (HARS36) , and synthetic hirudin gene under the control

of the MOX promoter (Figure 1) . The MF�1 prepro leader

sequence of S. cerevisiaewas used for the secretion of hirudin. Seed

cultures were grown overnight in 5 ml YNB medium (6.7 g yeast

nitrogen base, 30 mg leucine, and 20 g glucose ) and transferred

into a 100-ml flask containing enriched complex medium (30 g

yeast extract, 10 g peptone, 15 g KH2PO4, and 3.4 g yeast nitrogen

base per liter ) . Flask cultures were carried out in a rotary shaking

incubator (Vision Scientific VS1100, Inchon, Korea ) . All media

were heat -sterilized for 10 min at 1218C. Leucine and methanol

were filter - sterilized. A bench- top fermenter (KoBiotech KF-3L,

Inchon, Korea) was used for fed-batch and continuous cultures.

Batch fermentation was switched to a continuous or fed-batch

mode at the late exponential growth phase. Medium pH was

adjusted to 5.0 with 1 N HCl or 1 N NaOH, and temperature was

maintained at 308C.
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Analyses
Dry cell mass was measured at 600 nm. The conversion of optical

density to dry cell mass concentration was done using the

conversion equation:

Dry cell mass g L�1
� �

¼ 0:14�OD600

Culture broth was centrifuged for 10 min at 6000�g, and the

supernatant fluid was stored at �808C until further analysis.

Methanol concentration was analyzed using a gas chromatograph

(YoungLin 600D, Seoul, Korea ) equipped with a Carbowax 20M

column (Hewlett Packard, Palo Alto, CA) . Isopropyl alcohol

(2%) was used as an internal standard, and helium gas as a carrier

at a flow rate of 30 ml min�1. Oven temperature was linearly

elevated from 808C to 1408C at a rate of 208C min� 1.

Hirudin activity in the culture broth was determined through the

antithrombin activity [3,19,26] using a chromogenic substrate,

Chromozyme TH (Roche, Mannheim, Germany) . The amidolytic

cleavage of Chromozyme TH by thrombin (Sigma Chemical, St.

Louis, MO) was measured as the rate of increase in absorbance at

405 nm with a microtiter plate reader (Bio-Tek, Winooski, VT) .

Thrombin (0.6 NIH unit ml�1 ) , diluted culture supernatant fluid,

and Chromozyme TH (200 �M) were loaded into the 96-well

assay plate, and the reaction was monitored every 30 s for 5 min.

One unit of antithrombin activity (ATU) was defined as the

amount of hirudin able to completely inhibit one NIH unit of human

thrombin at 378C.

Results and discussion

A batch culture with the methanol medium was carried out to

examine the pattern of cell growth and hirudin expression (Figure

2) . Maximum dry cell mass was 2.30 g l�1 with an estimated cell

yield of 0.37 (g dry cell g� 1 methanol�1 ) . The total amount of

hirudin (7.30 mg l�1 ) produced was almost identical to that

obtained by the MOX promoter in the batch culture with glucose

(data not shown) . Recombinant H. polymorpha DLUV10 showed

higher specific hirudin expression levels in the methanol medium

than in the glucose or glycerol medium. However, since specific

Figure 1 Genetic map of plasmid pUAEM36. PMOX, methanol
oxidase promoter; HIR, synthetic hirudin gene in frame with MF�1
prepro leader sequence of S. cerevisiae; TMOX, methanol oxidase
transcriptional terminator.

Figure 2 Time course of cell growth, methanol consumption, and
hirudin production with recombinant H. polymorpha DLUV10 grown
at pH 5.0 and 308C. �, Dry cell mass; �, methanol; ~, hirudin.

Figure 3 Continuous culture of recombinant H. polymorpha DLUV10
grown at pH 5.0 and 308C. The fermentation mode was switched at the
late exponential growth phase. The methanol concentration in the inlet
feed was 8 g l� 1. �, Dry cell mass; �, methanol; ~, hirudin; 5,
hirudin productivity.
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growth rates in the methanol medium were lower compared with

those obtained from the glucose or glycerol medium, hirudin

productivity did not increase as expected.

Characteristics of hirudin production and cell growth were

further investigated in continuous and fed-batch cultures. The

fermentation mode was switched to the continuous cultivation

mode at the late exponential growth phase, and the enriched

medium supplemented with 8 g l�1 methanol was added. Dilution

rates were varied to modulate the residual methanol concentrations

at steady states. Maximum hirudin productivity of 1.8 mg l� 1 h�1

was obtained at 0.18 h�1 dilution rate and 1.7 g l�1 methanol

concentration (Figure 3) . As the dilution rate increased above

0.20 h�1, hirudin concentration and productivity gradually

decreased. Experimental results obtained from the continuous

culture clearly suggested that high concentrations of methanol

were detrimental to hirudin expression in recombinant H.

polymorpha DLUV10.

Effects of methanol concentrations were further investigated in

the fed-batch culture. A batch culture was grown for 21 h and then

switched to the fed-batch mode (Figure 4) . Methanol (200 g l�1 )

was intermittently fed to modulate residual methanol concentra-

tions in the fermenter. Cells continued to grow in the fed-batch

mode along with the concomitant expression of hirudin. An

increase in the residual methanol concentration caused a gradual

reduction in specific hirudin expression. Consequently, hirudin

production ceased even with continuous cell growth. Methanol

concentrations appeared to exert a greater effect on the hirudin

expression than the cell growth. When specific hirudin expression

levels were plotted against residual methanol concentrations for

different fermentation modes including batch cultures with various

initial methanol concentrations, continuous, and fed-batch cultures,

recombinant H. polymorpha showed a consistent specific hirudin

expression pattern for various fermentation modes. Thus, specific

hirudin expression levels exponentially decreased with an increase

in the residual methanol concentrations (Figure 5) .

Methanol is considered a derepressing substrate that enables the

highest expression of the enzymes involved in its catabolism

[10,20,21] . As mentioned above, use of methanol as the only

source of carbon and energy resulted in a very low growth rate and

low cloned gene productivity. One of the difficulties associated

with methanol feeding in the fed-batch cultivation of methylo-

trophic yeasts is that the methanol concentration must be

maintained within a narrow range to prevent its inhibitory effects

on cell growth and cloned gene expression [18] . Guarna et al [13]

observed that recombinant protein expression in recombinant P.

pastoris suddenly decreased when the residual methanol concen-

tration exceeded 1.0% (v/v) . High concentrations of methanol and

by-products, such as formaldehyde and formic acid, formed from

methanol metabolism should exert negative effects on the

metabolic activity of the cell, and eventually on the productivity

of the whole fermentation process.

In this study, effects of methanol concentrations on the

expression of an anticoagulant hirudin gene in recombinant H.

polymorphaDLUV10 were studied carefully to reveal the existence

of an optimum methanol concentration in the MOX promoter-

mediated expression of hirudin. More research is in progress to

establish optimum fermentation strategies by adopting the

experimental results obtained in this study.

Figure 4 Effects of methanol concentrations on hirudin production in
fed-bath cultivation of recombinant H. polymorpha DLUV10.�, Dry
cell mass; �, methanol; ~, hirudin; 5, specific hirudin expression
level. Methanol (200 g l� 1 ) was intermittently fed to modulate
residual methanol concentrations in the fermenter.

Figure 5 The relationship between specific hirudin expression levels
and residual methanol concentrations in various fermentation modes.
Data were obtained from shake flasks with various initial methanol
concentrations, and continuous and fed -batch cultures. Specific
hirudin expression levels for batch cultures were estimated from the
exponential growth phases.
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